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ABSTRACT: In this research, we examined whether fixed pattern noise or more specifically Photo Response Non-Uniformity (PRNU) can be
used to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 · 480 pixels. We extracted PRNU patterns
from both reference and questioned images using a two-dimensional Gaussian filter and compared these patterns by calculating the correlation coeffi-
cient between them. Both the closed and open-set problems were addressed, leading the problems in the closed set to high accuracies for 83% for
single images and 100% for around 20 simultaneously identified questioned images. The correct source camera was chosen from a set of 38 cameras
of four different types. For the open-set problem, decision levels were obtained for several numbers of simultaneously identified questioned images.
The corresponding false rejection rates were unsatisfactory for single images but improved for simultaneous identification of multiple images.
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In an ever increasing number of criminal cases, digital photo-
graphs or video footage is an important or even crucial part of the
incriminating evidence. In a number of such cases, the origin of
the footage is questioned and thus has to be determined. For
instance, in child pornography cases source camera identification
can conclude whether a suspect merely owned or actually produced
the evidential images.

When the origin of images has to be determined, two scenarios
exist. Either two (sets of) photographs are present, of which one is
known to originate from a suspect and it has to be determined
whether the other set is obtained with the same camera, or one (set
of) photograph(s) and a suspected source camera are present, in
which case it has to be determined whether the images originated
from that camera. The latter case can present much stronger evi-
dence to whether or not the suspect produced the incriminating
images as camera properties can be studied more thoroughly. In
this research we will mainly focus on the latter situation, assuming
the suspected source camera to be available and in working order.

To determine the origin of a given digital image, several tech-
niques have been developed. For instance, the aspect ratio of the
photograph, color quantization tables, and effects caused by color
interpolation schemes (1) can be used to determine the camera
model. These methods, however, only discriminate between camera
models and thus cannot distinguish between the suspected source
camera and a different camera of the exact same model.

To overcome this limitation, use has to be made of unique
features, i.e., features that differ from camera to camera. Such
unique features may be found in the extended file information

(EXIF) header. An EXIF header is additional information embed-
ded in digital images in which the camera manufacturer, model,
and serial number can be found (2). If the serial number
extracted from questioned images matches that of the suspected
source camera, then this is the strong evidence that the suspected
camera is indeed the source camera. However, EXIF headers can
easily be modified or removed and in these cases this feature
cannot be used.

A different approach is to study the traces left in the images by
the imaging sensor. One strong type of such a trace is pixel defects.
By studying the type, locations, and numbers of pixel defects in
the questioned images and the suspected source camera and similar
cameras, it can be concluded whether the suspected camera is
likely to be the source camera (3). However, pixel defects could be
absent or not visible in the photograph under study, and in the case
of lossy compressed images, in slightly different locations.

So instead of the limited number of pixel defects, traces intro-
duced by the imaging sensor affecting all pixels can be used. One
such trace is the so-called fixed pattern noise (4). Within a digital
camera, several mechanisms introduce stochastic noise causing
pixel intensities to deviate randomly from the value that is expected
based on the photographed scene. However, noise in the production
process caused by fluctuations in manufacturing conditions results
in static differences in the response of the pixels. This fixed pattern
noise can thus be seen as a kind of fingerprint within digital images
and can be used to identify the source camera.

Part of the fixed pattern noise, the so-called Photo Response
Non-Uniformity (PRNU) (5), has been successfully used in source
camera identification in (5). In this work, the source cameras of
around 3000 supposedly questioned images were selected without
error from a group of nine digital cameras of resolution
1280 · 960 and higher. Both uncompressed and mildly to moder-
ately JPEG-compressed images (JPEG quality factors between 100
and around 70) were attempted. Out of these nine cameras, only
two were of the same model. Even though distinction could be
made between these two cameras, more research on the unicity of
the PRNU patterns of different cameras of the same model is
required.
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Photo Response Non-Uniformity has also been used to identify
the origin of video footage (6). For three camcorders of two differ-
ent models and various compression techniques and qualities, the
correct source camera could be pointed out for clips of resolution
536 · 720 pixels. For high-quality clips, a duration of 40 sec was
required, for strongly compressed footage durations up to 10 min
were necessary. These durations correspond to as many as 600 and
9000 images, respectively.

In this research, we will focus on source camera identification
based on PRNU for full color still images of a low resolution of
640 · 480 pixels, acquired with webcams and phone cameras. To
save on bandwidth, these types of cameras use heavy compression
with JPEG quality factors as low as 30, comparable with the
strongly compressed footage (6).

As we focus on still images, requiring 600 images or more for
reliable results is not in general realistic. The performance of the
identification scheme (6) thus has to be improved significantly.
Therefore, we will propose new techniques to address problems
introduced by lossy JPEG compression and additional information
being extracted along with the PRNU pattern.

For the experiments, a total of 38 cameras of four different
models were used, with a minimum of eight cameras of the
same model to test the unicity of the patterns. For proper com-
parison of the different cameras, only cameras with the same
native resolution were used. In this research only unaltered photo-
graphs, i.e., uncropped, unscaled, etc., were experimented. This is
not a serious restriction as for the selected cameras used in this
research, i.e., webcams and phone cameras, photographs are usu-
ally not altered. As EXIF headers are well-known identifiers and
trivially removed from images, these headers are considered
unavailable.

In the remainder of this article, we will first state the problem
that has to be solved, followed by our proposed scheme for the
extraction of PRNU from both reference and questioned images.
Then we will propose techniques to address difficulties in the
extraction of the reference and questioned patterns, followed by the
performed experiments and the resulting performance of the identi-
fication scheme. Finally some pointers to future work are given.

Problem Statement

Source camera identification is based on the comparison of dis-
criminating features extracted from both the questioned images and
the suspected camera. To denote the similarity between the refer-
ence and questioned features, a similarity measure si is required:

si ¼ f Pi;Pq

� �
ð1Þ

where Pi is the extracted reference feature, Pq is the feature
extracted from the questioned photographs and f an arbitrary
function.

Source camera identification appears in two scenarios. The first
scenario is to select, from a set of cameras, the camera that is most
likely to be the source camera of a collection of photographs. This
problem will be referred to as the ‘‘closed-set’’ problem and
is solved by selecting camera j, the camera corresponding to the
maximum value for similarity si:

j ¼ argi max si: ð2Þ

Consequently, in the closed-set problem, in all cases one camera
will be identified as being the source camera. Naturally to reduce
the number of false identifications a decision threshold can be

introduced. However, as the closed set acts merely as a proof of
concept, the closed-set threshold is not further researched.

The second and harder scenario is to establish that a certain cam-
era is the source camera of a given (collection of) photograph(s).
In principle, this so-called ‘‘open-set’’ problem requires knowledge
of the characteristics of all digital cameras currently in use.

The open-set problem is solved by establishing a suitable deci-
sion threshold level d on si: if si > d, the corresponding camera is
decided to be the source camera of the photographs under study.
This approach can point out multiple cameras as the source camera
or none at all if all values si < d.

Both the open and closed-set problems will be addressed in
this paper using a selection of cameras that is assumed to be rep-
resentative for all cameras of the same resolution. The closed-set
problem can be seen as a proof of concept; its evidential value
is limited as it can only exclude cameras from a group of sus-
pected source cameras when its similarity is much lower than the
maximum similarity. The open-set problem is much more valu-
able and might answer the question whether a (collection of)
photograph(s) is taken with the suspected, available source
camera.

PRNU

In this section, we will elaborate on the previously mentioned
fixed pattern noise. Fixed pattern noise is introduced by small
differences in production conditions for each separate sensor and
results in small variations in pixel size and performance (4)
which form a fixed pattern within the sensor. As all sensors of
the same type are produced in the same process, it is expected
that the resulting fixed pattern is partly unique and partly the
same for all sensors of the same type. This statement is sup-
ported by Fig. 1. In this figure the average of all reference
PRNU patterns extracted from one camera model is shown. Very
clear features remain after averaging, indicating that those fea-
tures are present in all individual patterns. The common features
were not further researched. It thus has to be determined whether
the unique part is strong enough for reliable source camera
identification.

FIG. 1—The average of the 10 reference PRNU patterns of all Motorola
V360 phone cameras used in this research. Clearly visible are the horizon-
tal and vertical lines present in this averaged pattern. These lines are also
visible in all individual PRNU patterns (not shown). PRNU, Photo Response
Non-Uniformity.
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Due to the large amount of pixels in present day digital consumer
cameras, typically between 75,000 and 12 million, many different
patterns are possible. As the patterns are for a large part random in
nature, they are likely to be unique. Accordingly, fixed pattern noise
can be considered as the fingerprint of a digital camera.

Fixed pattern noise consists of two parts: dark current and
PRNU. The former is caused by thermally generated free charge
within a pixel leading to additional intensity being registered, and a
fixed pattern emerges due to slight inhomogeneities in material
properties introduced during manufacturing causing some pixels to
generate more dark current than others.

The latter contribution is also caused by slight differences
between the pixels in material and construction. Pixels that are
slightly smaller or pixels of slightly less pure material composition
are somewhat less sensitive than average. Being caused by sensitiv-
ity differences, PRNU is a multiplicative signal and its effect
depends on the image content.

Therefore, we model pixel (i,j) of image I being stored to file,
consistent with image degradation models in image restoration (7)

I i; jð Þ ¼ F i; jð Þ � O i; jð Þ þ D i; jð Þ þ N i; jð Þ ð3Þ

where O is the ideal, noise-free value; F, the PRNU; D, the
dark current contribution; and N, the stochastic noise of pixel
(i,j). The latter two contributions are additive signals; they are
independent of the pixel value O.

Dark current has been successfully used in source camera identi-
fication (8). However, the resulting pattern is relatively weak and
only detectable in dark scenes. Therefore from here on dark current
will be neglected, and thereby Eq. (3) simplifies to

I i; jð Þ � F i; jð Þ � O i; jð Þ þ N i; jð Þ: ð4Þ

As PRNU is a multiplicative signal, it will be invisible in very
dark or saturated scenes.

PRNU Extraction

Being caused by per-pixel variations in construction and mate-
rial, PRNU results in a per-pixel and thus high-frequency pattern.
To extract F ¢, an estimate of the high-frequent PRNU pattern F
together with stochastic noise, from an image I, a high-pass filter
implemented as

F0 ¼ I � G � I ð5Þ

is applied, where G is a low-pass filter and * denotes
convolution.

In this research we apply a two-dimensional Gaussian filter of
variance r2 in the spatial domain. This filter yielded in experi-
ments, not reported here, results comparable with the wavelet-
domain-based method used in Eq. (5), but requires less computa-
tion time. The influence of the variance parameter will be studied
in the Experiments section.

Information Extracted Along with PRNU

Scene Content

A consequence of applying a high-pass filter is that besides
high-frequency noise and PRNU, also high-frequency scene content
is affected. Accordingly, part of the scene content would be
considered PRNU. As is visible in Fig. 2, this extra content is
significantly stronger than the actual PRNU.

Reference Pattern—As in our case the suspected source camera
is assumed available and in working condition, influence of scene
content in extracted PRNU patterns can be avoided for the
reference patterns. One possibility is to use flat field photographs.
Ideally, a flat field image is the result of a uniformly illuminated
sensor and therefore no detail is present. Any information present
in a flat field image is thus a result of PRNU or stochastic
noise. In the notation of Eq. (4), the intensity I of pixel (i,j) after
illuminating the sensor uniformly is

I i; jð Þ ¼ F i; jð Þ � C þ N i; jð Þ ð6Þ

in which C is a constant intensity due to the uniform
illumination.

However, perfectly uniform illumination is not easily achieved
as the optics and sensor give rise to vignetting, a decrease of inten-
sity towards the edges of the image. Even with the optics removed,
flat fielding is a cumbersome task as this requires a parallel beam
of light of uniform intensity. Correcting for vignetting effects is not
straightforward as simply raising or lowering the intensity of certain
areas affects the PRNU and noise levels as well.

As the PRNU pattern of interest is of high frequency, the Gauss-
ian filter used to extract this pattern will have a high cut-off fre-
quency. Therefore, reference images are not required to be perfect
flat field images as long as the contained detail is of lower fre-
quency than that of the PRNU. Thus, using a high-pass filter to
extract PRNU from reference images allows for simple setups; we
photographed a white sheet of paper in fluorescent light under
varying angles to suppress any possible constant contribution due
to scene content. Where possible the cameras were defocused to
further avoid any detail.

Questioned Images—Upon obtaining the reference pattern, one
can acquire any required image to extract the PRNU pattern as effi-
cient as possible. However, scene content which is extracted along
with PRNU is unavoidable in questioned images. This additional
scene content has to be suppressed in F0q, the high-frequency con-
tent extracted from the questioned image, otherwise identification
will be (partly) based on this scene content.

As the PRNU pattern has certain maximum amplitude, any pixel
in PRNU patterns extracted from questioned images of higher abso-
lute value than this amplitude cannot be part of the PRNU. There-
fore, we propose to suppress the scene content by applying a
threshold; only pixels in the questioned pattern with absolute value
smaller than a certain threshold are considered reliable pattern
pixels. The other pixels are considered unreliable and masked out.

FIG. 2—Example of additional information being extracted along with
noise and PRNU. The original image (a) can easily be recognized in the
extracted noise, (b), and the noise and PRNU are barely visible. The high-
frequency content in (b) is obtained using a Gaussian filter of variance 0.6
pixels, and contrast scaled to improve visibility. PRNU, Photo Response
Non-Uniformity.
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The threshold levels for the various camera types used are deter-
mined in the Experiments section.

Stochastic Noise

Extracting the high frequencies from an image will not only
yield an approximation of the PRNU pattern, but also a contribu-
tion of the stochastic noise. Assuming the noise contributions N(i,j)
to be zero-mean, i.i.d. variables, the stochastic noise can be
removed by averaging the extracted high-frequency contents F ¢n(i,j)
from multiple images:

F0ref i; jð Þ ¼ 1
N

XN

n¼1

F0n i; jð Þ ð7Þ

where F0ref i; jð Þ is the average of pixel (i,j) of all the contents
extracted from reference images n = 1,2,…, N. Averaging mul-
tiple high-frequency contents also averages out any possible
scene content present in the reference image and thus in the
reference pattern, like for instance fine structure within the
paper sheet and edges introduced by shadows.

Above a certain number of reference images N, the stochastic
noise is averaged out and what remains is a stable PRNU pattern.
As a consequence of convergence of all pixels, the sum of the
absolute values of all pixel values will converge to some value as
well. The quadratic sum Q of all pixel values is thus a good
measure of the convergence of the pattern:

Q ¼
X

all i;jð Þ
F0ref i; jð Þ2 ð8Þ

where the summation runs over all pixels and F0ref i; jð Þ is pixel
(i,j) of the averaged reference pattern as defined in Eq. (7). A
stable reference pattern is reached if Q converges to a constant
value.

In Fig. 3 the value of Q is plotted against the number of images
acquired with a Motorola V360 phone camera included in the aver-
aged reference pattern. Judging from this figure, a stable reference
pattern is obtained after averaging the high-frequency contents
extracted from around 300 reference images, though Q remains
roughly the same after 50 images. The same number of images
were required for the reference patterns (Eq. [5]). Different camera

models yielded similar plots, and as the camera is assumed avail-
able, we used 300 reference images to obtain a reference pattern.

JPEG Compression

All cameras used in this research applied JPEG compression to
their images to save on bandwidth. Upon JPEG compression, the
discrete cosine transform (DCT) of groups of 8 · 8 pixels is calcu-
lated and the resulting coefficients are stored. The reduction of
required storage space is reached by suppressing or removing some
of the higher frequencies within each such DCT block.

However, the content of the surrounding DCT blocks is not
taken into account at all and therefore continuity between neighbor-
ing DCT blocks is not guaranteed. This discontinuity results in a
clear pattern present in the extracted high-frequency content. As
visible in Fig. 4, this pattern coincides with the edges of the DCT
blocks and is similar in all JPEG compressed images of the same
resolution. The resulting pattern is even for reference images,
mainly caused by scene content and stronger than the reference
PRNU pattern.

A pattern that is present in all photographs and reference patterns
and stronger than the pattern caused by PRNU will severely com-
plicate source camera identification. Therefore, this blocking effect
should be suppressed to obtain a camera fingerprint that is mainly
based on the actual image content.

Noting the periodicity of the pattern caused by JPEG compres-
sion, a straightforward approach would be to suppress the corre-
sponding frequency components within the image. This approach is
used in the study by Chen et al. (6). In this work, the edge artifacts
are modeled as a spike-train. However, as can be seen in Fig. 4,
this pattern is only approximately periodic: the edges of the DCT
blocks are present in differing strengths and colors. Furthermore,
both the left- and right-hand side of the DCT blocks show edge
artifacts. Thus, the assumption of a spike-train is not optimal.

In the context of image enhancement, in the study by Singh
et al. (9), several other techniques to suppress these edge artifacts
are treated. However, all of these techniques have only limited
applicability as they aim at removing the pattern to yield a more
pleasing image. For that purpose, the artifacts are mostly smoothed
instead of removed.

Instead of using the periodicity of the edges, we propose an
approach that utilizes the fixed locations of the JPEG edge artifacts.
In this approach, multiple pixels are per color channel, averaged
into one ‘‘macro element.’’ This way the effect of the DCT block

FIG. 4—Example of a part of a reference pattern obtained from 300 ref-
erence images. The edges of the discrete cosine transform blocks are clearly
present and dominant over the other content within the pattern.

FIG. 3—Convergence of Q versus the number of reference images
included in the averaged reference pattern. From around 300 images Q
becomes stable. Images originated from a Motorola V360 phone camera.
PRNU, Photo Response Non-Uniformity.
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edges is averaged out over these multiple pixels and thereby
strongly suppressed. However, by averaging multiple pixels into
one macro element, the resolution of the images, and therefore of
the reference and questioned estimates of the PRNU patterns is
decreased.

As each DCT block consists of 8 · 8 = 64 pixels, there are sev-
eral ways in which the edge effects can be suppressed. As the
DCT is calculated using only information within the DCT block,
only pixels within one block should be averaged to suppress the
edges in the most effective way. Naturally as much information as
possible should be maintained and therefore all pixels within each
block should be included upon averaging. This leaves four possibil-
ities: averaging groups of 8 · 8, 4 · 4, and 2 · 2 into one effective
pixel or no pixel averaging at all.

The choice as which of these options is to be used is governed
by the trade-off between the effective resolution of the resulting
pattern, and thus the number of possible unique PRNU patterns
and the remaining strength of the pattern introduced by JPEG com-
pression. This trade-off will be studied extensively in the Experi-
ments section. In Fig. 5 the effect of averaging groups of 8 · 8
pixels into one macro element on an extracted reference PRNU
pattern is demonstrated.

PRNU Detection

If the reference pattern obtained by filtering reference images is
strongly present in PRNU extracted from questioned images, it is
very likely that the questioned images originated from the camera
corresponding to that reference pattern. To measure this, we need a
similarity function si as in the Eq. (1). As PRNU is a multiplicative
signal, the resulting pattern will differ from image to image in
intensity and contrast, and a comparison method should be insensi-
tive to both intensity and contrast.

Therefore, an appropriate measure for the presence of refer-
ence pattern F0ref in the questioned pattern F0q is the correlation
coefficient q between the two patterns as used in Eq. (5):

si ¼ q F0ref ;F
0
q

� �

¼

P
all i;jð Þ

F0ref i; jð Þ � F0ref

� �
� F0q i; jð Þ � F0q

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all i;jð Þ

F0ref i; jð Þ � F0ref

� �2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all i;jð Þ

F0q i; jð Þ � F0q

� �2
s ð9Þ

where F0q is the average of all pixel values within natural PRNU
pattern F0q. The higher the value for q, the more the two pat-
terns are alike.

Any PRNU pattern whether extracted from reference or ques-
tioned images will be of the same dimensions as the source image:
it consists of three two-dimensional patterns, one for each of the
three color channels. Due to the color interpolation applied to each
pixel (10), the three color channels are, however, not independent.
To preserve this dependence, we compare the resulting three color
channels separately using Eq. (9) and the three correlation coeffi-
cients are averaged. Upon comparison, only the pixels in F0q that
are considered reliable after thresholding are compared with the
corresponding pixels in F0ref .

Experiments

In this section, all the above is put together and the accuracy of
the resulting algorithm is tested. The questioned images in this
research were shot at a wide variety of settings to obtain the most
general results. The 38 cameras used are listed in Table 1. Assum-
ing them to be most commonly used, all cameras were set to the
following settings: illumination and white balance are set to auto-
matic, zoom is not used, images are taken at native resolution, and
JPEG compression is enabled. No control over the compression
ratio was possible. Four examples of questioned images are shown
in Fig. 6.

Questioned images can be images of any scene that is of rele-
vance in criminal investigations and therefore can be taken under a
wide variety of conditions. To obtain the most general results
images used in this research as questioned images are also acquired
under various conditions. Indoor and outdoor, motion blurred,
defocused, high-detail, over- and underexposed scenes, and scenes
virtually free from detail are used.

Parameter Estimation

To summarize our method, we extract PRNU from both refer-
ence and questioned images by applying a Gaussian filter, and
we suppress additional scene content extracted along with the
PRNU patterns from questioned images by masking out all pixels
with intensity higher than a certain threshold. To suppress JPEG
edge artifacts, we average several pixels into one macro element.
These three techniques all have one parameter that has to be
optimized, and the three parameters are estimated below. Experi-
ments not reported here showed that the order in which these
three parameters are optimized is irrelevant, and thus that the
three parameters are virtually independent. The optimal macro
element size is researched in section Camera Identification
Performance.

Variance of the Gaussian Filter—The Gaussian filter has one
free parameter; r2, the variance of the kernel. This variance deter-
mines the cut-off frequency of the filter and thus what part of a
photograph is considered to be scene content or stochastic noise
and PRNU. To determine the optimal value for r, the following
test is performed for each camera model.

FIG. 5—The effect of pixel averaging on extracted PRNU patterns. On
the left is the original extracted pattern, on the right is the pattern after
averaging 8 · 8 pixels into one macro element. Note that even though much
information is discarded, similar features are still present. Only the
red channel is selected for these images. PRNU, Photo Response Non-
Uniformity.

TABLE 1—List of used cameras.

Model Quantity
Camera

Numbering

Motorola V360 10 7.1–7.10
Vodafone 710 (internal camera) 10 9.1–9.10
Creative Live! Cam Video IM 8 11.1–11.8
Logitech QuickCam
Communicate STX

10 12.1–12.10
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The reference pattern of one camera per model is determined
from 300 reference images using a Gaussian filter of varying vari-
ance r. To remove DCT-block artifacts, groups of 4 · 4 pixels are
averaged into one macro element as this will turn out to be the best
of the four JPEG edge artifact suppression options previously dis-
cussed. For each value of r the high-frequency content is extracted
using the same Gaussian filter from 106 questioned photographs of
the same camera (match) and from 106 images of a different cam-
era (mismatch) of the same model.

Using Eq. (9), 106 correlation coefficients between each ques-
tioned image and the reference pattern are calculated for both the
match and mismatch situation. The mean of these correlation coef-
ficients together with twice the standard deviation are plotted
against filter variance r for two Creative Live! Cam Video IM
webcams in Fig. 7.

The plots in Fig. 7 can roughly be divided into three regions. In
region I, r < 0.6, the Gaussian kernel does not extend past the

central pixel, i.e., the cut-off frequency is higher than the highest
frequency present in the image. Therefore, no information is
extracted from the images.

In region III, when r > 1.4, the Gaussian kernel is too wide; the
corresponding cut-off frequency is too low, leading to too much
non-PRNU information being extracted from the images. Therefore,
additional patterns are present in the extracted information and cor-
respondingly a higher spread in the correlation coefficients is
found. Also, in this region there is no separation between match
and mismatch correlation coefficients; all mismatch correlation
coefficients found are within the match correlation coefficient
distribution.

Only in region II, for 0.6 < r < 1.4, separation between match
and mismatch correlation coefficients is found; the lower boundary
for mismatch correlations is lower than that of the match correla-
tions. Therefore, choosing r in this region will result in the best
performance. As can be seen in the enlargement of region II in

FIG. 6—Some examples of questioned images used in this research.

FIG. 7—Plot of correlation distribution between one reference pattern and 106 questioned images from the same (match) or a different (mismatch) Creative
Live! Cam Video IM camera against filter variance r. In the enlarged plot of section II it can be seen that only for 0.6 £ r £ 1.4, the match correlation lower
boundary is higher than the mismatch lower boundary. PRNU, Photo Response Non-Uniformity.
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Fig. 7, the separation is largest for r = 0.6, and therefore a Gauss-
ian filter of variance r = 0.6 will be used. The same conclusion is
reached for the other three camera models used in this research
and is easily explained using r = 0.6, the Gaussian kernel extends
just to the surrounding pixels and therefore the correct cut-off
frequency is achieved. This value is thus a universal value.

Threshold Levels to Suppress Scene Content—In the subsec-
tion Questioned Images, a method to suppress scene content from
extracted content was proposed; only pixels from the extracted pat-
terns with absolute value lower than a certain threshold value based
on the PRNU amplitude are considered reliable. To determine the
appropriate threshold level for a certain camera model, we per-
formed the following experiment.

For one camera, 300 reference images are acquired. From these
photographs, due to the limited amount of data present, only 200
images are used to calculate a reference pattern in the way
described above as the same set of photographs is used. The PRNU
and noise of the remaining 100 images are extracted using a Gauss-
ian filter of variance r = 0.6 and thresholding is applied for various
t; all pixels with absolute value higher than t are masked out.

For various t the 100 correlation coefficients between reference
pattern and extracted contents from a Creative Live! Cam Video IM
webcam are calculated and the mean and standard deviation of these
100 correlations are plotted against t in Fig. 8. Note that the mean
match correlation is much larger than that found in Fig. 7. This is
easily explained as the data in Fig. 8 was obtained by comparing ref-
erence images to a reference pattern, whereas in Fig. 7 questioned
images were compared with a reference pattern, thereby introducing
spurious effects caused by high-frequency image content.

In Fig. 8 it can be observed that for thresholds t > 4 the distribu-
tion of correlation coefficients remains the same, whereas for lower
values where more and more of the pattern is suppressed, the corre-
lation drops rapidly. This implies that for this camera, below a
threshold level of t = 4, the PRNU itself is suppressed signifi-
cantly. Note that the threshold should be as low as possible to
remove as much scene content as possible from questioned images
without suppressing the PRNU itself.

For this camera, the effective amplitude of the PRNU is thus
found to be a pixel value of 4. In total three Creative Live! Cam
Video IM webcams were tested and all three resulted in the same
threshold level t = 4. Using the same method, we obtained thresh-
old levels for the remaining three camera models. For these camera
models, different cameras of the same model yielded the same
threshold level as well.

Camera Identification Performance

Closed-Set Problem—The closed-set problem concerns selecting
from a fixed group of cameras the one that is most likely to be the
source camera. Therefore, its evidential strength is lower than in
the open-set problem as not all possible cameras can be included.
However, the closed-set problem is still valuable as cameras can be
determined not to be the source camera.

To determine the performance of the closed-set source camera
identification scheme, the following experiment has been per-
formed. First, the reference patterns of all 38 cameras in Table 1
are calculated. With each of the 38 cameras, 106 supposedly
questioned images are acquired. From all questioned images the
high-frequency content is extracted and using thresholding, scene
content within the estimated pattern is suppressed.

For each camera, 100 random selections were made from the
106 questioned images. Each of these 100 images was matched to
one of the 38 cameras based on a maximum correlation between
reference and estimated questioned patterns.

In Table 2 the results of the above experiment are shown in the
form of a confusion matrix. On each row, the 100 randomly
selected images originating from the camera corresponding to that
row are based on a maximum correlation coefficient as in Eq. (2),
matched to one of the 38 cameras.

Each time a certain camera was concluded to be the source cam-
era, its corresponding entry was raised by one. From the 100 ques-
tioned images from camera 7.1 for instance, a Motorola V360, 83
were concluded to originate from the correct camera, whereas two
questioned photographs were incorrectly matched to camera 7.5, etc.

Table 2 shows that the diagonal elements, i.e., correct identifica-
tions, have high values. This suggests that in the closed-set prob-
lem, source cameras can quite accurately be pointed out based on a
maximum correlation coefficient. To quantify the performance of
this source camera identification, the accuracy a is calculated from
the confusion matrix:

a ¼ Number of correct identifications
Total number of identifications

ð10Þ

For the confusion matrix of identification of single questioned
images in Table 2, this accuracy is a = 83.7%.

The above accuracy of a = 83.7% was reached by averaging
groups of 4 · 4 pixels into one macro element in order to suppress
the DCT-block edge artifacts. When instead of pixel averaging, fre-
quency suppression is applied as in Eq. (6), the accuracy for this
experiment is only 41.2%. It can thus be concluded that our pro-
posed technique yields significantly better results.

The experiment was repeated for simultaneous identification of
n = 2, 5, 10, 17, and 25 questioned images as well, i.e., the high-
frequency contents of several randomly selected questioned images
of the exact same camera were averaged, and the resulting pattern
was then compared to all reference patterns. Also the size of the
pixel group being averaged into one macro element to suppress
DCT-block edge artifacts was varied to determine the optimal
method. All resulting accuracies are shown in Table 3.

FIG. 8—Plot showing the distribution of the 100 correlation coefficients
between PRNU patterns estimated from single reference images and the pat-
tern obtained from 200 reference patterns. Below t = 4 the correlation
decreases rapidly, indicating that t = 4 is the effective amplitude of the
PRNU for this camera, a Creative Live! Cam Video IM. PRNU, Photo
Response Non-Uniformity.
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Table 3 shows that the accuracy of the source camera identifica-
tion increases when more questioned images are identified simulta-
neously. This is easily explained as averaging multiple extractions
to one questioned PRNU pattern will suppress both stochastic noise
and scene content.

Based on Table 3, the source camera, in a closed set of 38 cam-
eras of four different models, can be quite reliably identified for
simultaneous identification of n = 5 questioned images. For com-
pressed footage of comparable resolution and compression factors,
for a closed set of three cameras, duration of 40 sec or more was
required for a reliable identification, corresponding to more than
600 images (6). It can thus again be concluded that pixel averaging
is much more effective in removing JPEG edge artifacts than fre-
quency suppression. Requiring as few as five frames for a reliable
identification is reasonable for source camera identification of still
images.

As a final remark, most of the images of which the source cam-
era was incorrectly identified either contained lots of high-fre-
quency detail or contained saturated or very dark regions. In
images with high-frequency details, separating PRNU from this
detail is complicated, and in saturated images the effect of the
PRNU is lost as all pixels will have the same maximum value.

Optimal Macro Element Size—Table 3 also shows that the best
performance is reached when groups of 4 · 4 pixels are averaged
to suppress JPEG edge artifacts. Even though in this case only four
macro elements remain per DCT-block and the number of possible
unique patterns is decreased by a factor of 16, the edge artifacts
are strongly suppressed resulting in an improvement of the perfor-
mance of the identification scheme.

Open-Set Problem—The closed-set problem always results in
one camera to be chosen as most likely source camera as this deci-
sion is based on determining the maximum correlation between
reference and questioned PRNU patterns. This approach is, how-
ever, not suitable to the open set as this would require all cameras
in existence to be compared.

Instead of determining the most likely source camera, a decision
level d for the correlation coefficient has to be obtained above
which it can, with reasonable certainty, be concluded that the cam-
era corresponding to the reference pattern yielding this correlation
is indeed the source camera.

To derive this decision level d, knowledge of the distribution of
the correlation coefficients for a representative group of cameras is
required. Once the distribution is known, it is relatively straightfor-
ward to impose an appropriate false acceptance rate (FAR), i.e., the
rate at which the wrong camera is misidentified as being the source
camera, and to determine the corresponding decision level d.

The correlation coefficient distribution was obtained using the
same experiment as for the closed-set problem; for each of the 38

cameras, 100 random selections of one or multiple questioned
images from the same camera were made. The PRNU patterns
extracted from these selections of questioned images were com-
pared with all reference patterns, including the reference pattern
corresponding to the actual source camera.

The correlation coefficients between matching, i.e., reference and
questioned patterns from the same camera, and mismatching ques-
tioned ⁄ reference patterns are shown in Fig. 9. Again, r = 0.6 and
macro elements of size 4 · 4 pixels were used.

From the histograms in Fig. 9 it can be observed that the separa-
tion between match and mismatch correlation is larger when more
questioned images are simultaneously identified. This is to be
expected as the closed-set problem showed higher accuracies for
higher numbers of simultaneously identified questioned images. In
Fig. 9 it is also clear that especially for simultaneous identification
of multiple questioned images, the mismatch distribution is bimo-
dal, which causes a large overlap between matching and mismatch-
ing distributions. The cause of this overlapping lump is unknown;
however, an experiment not reported here showed that it was not
caused by similarities between reference patterns of cameras of the
same model.

From the histograms in Fig. 9, d is determined. First, a rather
arbitrary FAR of 1& is chosen, implying that one in a thousand
correlation coefficients between reference and nonmatching ques-
tioned patterns is greater than d. Thus, once in every thousand
attempts the wrong camera is identified as being the source camera.
This FAR certainly may not be any higher for reliable results and
preferably should be lower still.

Requiring a FAR of 1& implies selecting a decision level d for
which

FAR ¼ Number of qmismatch > d
Total number of qmismatch

¼ 1
1000

: ð11Þ

As the match and mismatch histograms exhibit some overlap,
imposing a FAR will lead to some correct identifications to be dis-
carded as well. The rate at which this occurs is called the false
rejection rate (FRR)

FRR ¼ Number of qmatch < d
Total number of qmatch

: ð12Þ

Furthermore, each d will lead to different FAR and FRR val-
ues. For a certain value of d, the FAR and FRR are equal and
this rate is called the equal error rate (EER). The EER is a good
measure of the performance of the source camera identification
scheme as a low value indicates low error rates and thus few
incorrect identifications and few rejections of correct identifica-
tions. For a FAR of 1&, the corresponding decision level d and
FRR are given in Table 4 for all n. In that same table, the EERs
are given for all n.

From Table 4 it appears that requiring FAR = 1& leads to high
values of FRR for all n. Therefore, a large part of the correct iden-
tifications will be rejected. If more than one questioned image is
simultaneously identified, the FRR drops as does the EER. Again,
the performance is shown to improve upon identifying multiple
images originating from the same camera simultaneously.

Discussion

For 38 cameras of four different models at a low resolution of
640 · 480 pixels, closed-set problems could be solved with accura-
cies of 83% for single up to 100% for selections of 25 questioned

TABLE 3—Accuracies of the closed-set source camera identification
problem.

n

Size of Averaged Pixel Group

1 · 1 2 · 2 4 · 4 8 · 8

1 47.6% 80.4% 83.7% 54.7%
2 59.7% 87.9% 93.1% 70.1%
5 74.2% 94.7% 99.0% 89.7%
10 81.8% 97.5% 99.9% 96.1%
17 85.9% 98.0% 100% 98.3%
25 87.1% 99.0% 100% 99.3%
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images, implying that of at least 83% of all (selections of) ques-
tioned images, the correct source camera was identified from this
group of cameras. Thus we have shown that PRNU is even unique
among cameras of the exact same type.

We focused on the situation where both questioned photo-
graph(s) and suspected source cameras are present and the camera
is in working order. This enabled the acquisition of flat field
images so that the reference patterns could easily be extracted. The

research can, however, still be carried out by extracting the refer-
ence pattern from a set of questioned photographs of which the
source camera is known to be the suspected camera as shown in the
study by Luk�Ð et al. (5). However, the only conclusion that can be
drawn is that two sets of images originate from the same camera.
The origin of the reference set is to be determined separately.

Using the same set of cameras, we obtained decision levels to
solve the open-set problem, i.e., determining how likely it is for a
given camera to be the source camera without directly comparing
it with other cameras. When the reference pattern of a certain cam-
era has a correlation coefficient with the PRNU extracted from the
questioned image(s) that is higher than this decision level, this cam-
era is concluded to be the source camera. This decision level is
found by requiring a false acceptance ratio of 1&, and the corre-
sponding FRRs were found to be rather high. This means that in
most cases, a single image will not suffice and thus that multiple
images are required.

The results show that source camera identification based
on PRNU is possible despite heavy JPEG compression which
suppresses high-frequency signals such as PRNU. To remove
DCT-block edge artifacts introduced by JPEG compression, we
have proposed the simple method of averaging multiple pixels into

FIG. 9—The normalized histograms of correlation coefficients between matching and mismatching camera pairs for various numbers (n) of simultaneously
identified images. The larger the number of simultaneously identified questioned images, the greater the separation between match and mismatch distributions
and thus the better the performance of the identification scheme. In all six cases, some amount of overlap persists.

TABLE 4—Decision levels plus corresponding FRR for a FAR of 1& and
EERs.

FAR = 1&

EERd FRR

n = 1 0.101 89.4% 0.1605
2 0.102 83.0% 0.1320
5 0.126 67.2% 0.1186
10 0.159 60.0% 0.1154
17 0.186 53.3% 0.1146
25 0.206 48.8% 0.1118

EER, equal error rate; FAR, false acceptance rate; FRR, false rejection
rate.
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one macro element. This method proved significantly more effec-
tive than previously reported methods even though the effective
resolution of the images, and thus the number of possible unique
patterns to choose from decreases. In addition, the techniques pro-
posed in this research can readily be applied to video footage.

In this research we showed that simple and computationally effi-
cient techniques enable effective source camera identification, espe-
cially for the closed-set problem, i.e., PRNU extraction using a
two-dimensional Gaussian filter, detection by calculating a correla-
tion coefficient, JPEG edge artifact suppression by pixel averaging,
and scene content suppression by thresholding enabled accurate
identification in closed-set problems.

However, the open-set problem performance has to be improved
significantly. If it can be determined what causes the bimodal
behavior in the histograms in Fig. 9, the resulting overlap between
matching and mismatching distributions may be addressed. If this
overlap can be reduced, the false rejection and EERs will drop
significantly.

Future Work

Future work will include both improving the performance of the
identification scheme in this research and extending this research to
different situations and applications. The greatest improvement is
expected to be achieved by researching more elaborate methods to
suppress scene content being extracted along with PRNU and sto-
chastic noise. One of the possibilities is to apply edge detection
schemes (11) to determine the affected pixels.

Extensions can be made by changing either the source of the
images, the type of problem, or the type of images. For instance,
digital cameras with different resolutions, cameras taking uncom-
pressed images, or camcorders resulting in video footage can be
used as carried out by Luk�Ð et al. (5) and Singh et al. (9), respec-
tively. In addition, in this research we only considered images that
came directly from the camera, i.e., images were not cropped,
scaled, recompressed, etc. The effects of the various alterations were
not researched, but it is expected that certain actions, for instance
rotation or scaling, will alter the PRNU pattern significantly (12).

Finally, the PRNU might yield information of at least the brand
or model of an image. During this research we have observed that
for certain camera models, the calculated reference patterns of dif-
ferent cameras of the same model showed similarities. However,

this has to be studied in more detail before conclusions can be
drawn.
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